Supramolecular Chemotherapy: Complexation by Carboxylated Pillar[6]arene for Decreasing Cytotoxicity of Nitrogen Mustard to Normal Cells and Enhancing Its Antitumor Efficiency against Breast Cancer.
Jin Long ZhangXiao Wei ZhangBing YuanHeng ZhangXing Zhi WangHao WangHong Wei ZhaoPublished in: ACS omega (2024)
Advances in chemotherapeutic strategies are urgently required to improve antitumor efficiency. Herein, a carboxylated pillar[6]arene (CP6A) was employed to load chemotherapy medication, nitrogen mustard (NM), via forming a direct host-guest complex, as this helps to decrease the cytotoxicity of NM on normal mammary epithelial cells. Attributed to the stronger complexation ability of CP6A for endogenous spermine (SPM) than for NM, the complexed NM could be competitively released from the CP6A cavity via replacement with SPM. This chemotherapy strategy performed well in vitro and in vivo for SPM-overexpressed cancers. In comparison with free NM, antitumor efficiency of NM/CP6A was significantly enhanced, which originated from the synergistic effect of competitive release of NM and simultaneous trapping of SPM. This strategy might guide expansion to other first-line antitumor agents to improve therapeutic efficacy and decrease side effects, thereby replenishing the possibilities of supramolecular chemotherapy.