Login / Signup

Gα13 Mediates Transendothelial Migration of Neutrophils by Promoting Integrin-Dependent Motility without Affecting Directionality.

Claire W ChangNi ChengYanyan BaiRandal A SkidgelXiaoping Du
Published in: Journal of immunology (Baltimore, Md. : 1950) (2021)
Neutrophil migration requires β2 integrins and chemoattractant receptor signaling for motility and directionality. G protein subunit Gα13 can facilitate cell migration by mediating RhoA activation induced by G protein-coupled receptors. However, the possible role of Gα13-integrin interaction in migration is unclear. In this study, we show that Gα13 -/- neutrophils are deficient in transendothelial migration and migration on β2 integrin ligand ICAM-1. However, unlike G protein-coupled receptors and integrin inside-out signaling pathways, Gα13 is important in migration velocity and neutrophil spreading but not in directionality nor cell adhesion. Importantly, neutrophil recruitment in vivo was also inhibited in Gα13 -/- mice, suggesting the importance of Gα13 in transendothelial migration of neutrophils in vitro and in vivo. Furthermore, a synthetic peptide (MB2mP6) derived from the Gα13 binding site of β2 inhibited Gα13-β2 interaction and Gα13-mediated transient RhoA inhibition in neutrophils, suggesting that this peptide inhibited integrin outside-in signaling. MB2mP6 inhibited migration of control neutrophils through endothelial cell monolayers or ICAM-1-coated filters, but was without further effect on Gα13 -/- neutrophils. It also inhibited integrin-dependent neutrophil migration velocity without affecting directionality. In vivo, MB2mP6 markedly inhibited neutrophil infiltration into the cardiac tissues induced by ischemia/reperfusion injury. Thus, Gα13-dependent outside-in signaling enables integrin-dependent neutrophil motility without affecting directionality and may be a new therapeutic target for inhibiting neutrophil trafficking but not adhesion.
Keyphrases
  • cell migration
  • cell adhesion
  • signaling pathway
  • type diabetes
  • cell proliferation
  • metabolic syndrome
  • adipose tissue
  • cystic fibrosis
  • staphylococcus aureus
  • blood flow
  • skeletal muscle