Login / Signup

Prevention of Zinc Precipitation with Calcium Phosphate by Casein Hydrolysate Improves Zinc Absorption in Mouse Small Intestine ex Vivo via a Nanoparticle-Mediated Mechanism.

Yinong FengJiayou ZhangYu MiaoWei GuoGuangxin FengYisheng YangTengjiao GuoHaohao WuMingyong Zeng
Published in: Journal of agricultural and food chemistry (2020)
Casein phosphopeptides are known to enhance zinc absorption, but the underlying mechanism remains unclear. Here, a gastrointestinal casein hydrolysate (CH) was found to keep zinc in solution despite heavy precipitation of calcium and phosphate, the omnipresent mineral nutrients that could co-precipitate zinc out of solution instantly and almost completely under physiologically relevant conditions. Dynamic light scattering, transmission electron microscopy, and energy-dispersive X-ray analysis displayed the CH-mediated formation of zinc/calcium phosphate (Zn/CaP) nanocomplexes aggregated from rather small nanoclusters. The ex vivo mouse ileal loop experiments revealed enhanced intestinal zinc absorption by CH's prevention of zinc co-precipitation with CaP, and the treatments with specific inhibitors unveiled the involvement of macropinocytic internalization, lysosomal degradation, and transcytosis in the intestinal uptake of zinc from Zn/CaP nanocomplexes. A low calcium-to-phosphorus ratio adversely affected CH's efficiency to enhance zinc solubility and absorption. Overall, our study provides a new paradigm for casein phosphopeptides to improve zinc bioavailability.
Keyphrases
  • oxide nanoparticles
  • room temperature
  • heavy metals
  • magnetic resonance imaging
  • blood brain barrier
  • transcription factor
  • sensitive detection
  • fluorescent probe
  • data analysis