Login / Signup

Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-transfersomes for the topical treatment of cutaneous leishmaniasis.

Muhammad Junaid DarCraig A McElroyMuhammad Ijaz KhanAbhay R SatoskarGul Majid Khan
Published in: Expert opinion on drug delivery (2019)
Objective: To test the hypothesis that miltefosine (MTF)-polyphenol co-loaded second-generation nano-transfersomes (SGNTs) can be an effective approach for the topical treatment of cutaneous leishmaniasis (CL).Methods: The co-loaded SGNTs with various MTF-polyphenol combinations were developed, evaluated and compared for the entrapment efficiency, vesicle size, deformability index, ex-vivo permeation, cytotoxicity, and anti-leishmanial potential, using both in-vitro and in-vivo models.Results: The co-loaded SGNTs were spherical in shape, with an average size of 119 ± 1.5 nm and a high entrapment efficiency of 73.7 ± 3.7%. The ex-vivo study displayed a 3.2-fold higher permeation of MTF when entrapped in co-loaded SGNTs, whereas cytotoxicity potential of co-loaded SGNTs was 43.2% higher than the MTF solution. A synergistic interaction was observed between MTF and apigenin (APG) among all polyphenols and an 8.0-fold lower IC50 was found against amastigotes of DsRed Leishmania mexicana, compared with the plain MTF solution. Moreover, the in-vivo studies displayed a 9.5-fold reduced parasitic burden in the L. mexicana infected BALB/c mice treated with MTF-APG co-loaded SGNTs gel.Conclusions: The potential of MTF-APG co-loaded SGNTs topical formulation is established for the first time as an effective drug delivery strategy against CL.
Keyphrases
  • drug delivery
  • cancer therapy
  • wound healing
  • drug release
  • skeletal muscle
  • risk factors
  • risk assessment
  • insulin resistance