Login / Signup

The sources of electrophysiological variability in the retina of Periplaneta americana.

Roman V Frolov
Published in: Visual neuroscience (2019)
Variability in the electrophysiological properties of homotypic photoreceptors is widespread and is thought to facilitate functioning under disparate illumination conditions. Compound eyes of insects have three sources of variability: inter-individual, intra-individual, and intra-ommatidial, the latter two overlapping. Here, I explored the causes of variability in Periplaneta americana, a nocturnal insect characterized by highly variable photoreceptor responses. By recording from photoreceptors in dissociated ommatidia, including consecutive recordings from photoreceptors in the same ommatidium (SO), I studied the variability of six properties: whole-cell membrane capacitance (Cm), phototransduction latency, maximal conductance (Gmax) and the slope factor of the sustained Kv current, absolute sensitivity in dim light, and sustained light-induced current (LIC) amplitude in bright light. Coefficient of variation (CV) metrics were used to compare variances in four experimental groups: SO, same animal (SA), all data combined "full sample" (FS), and full sample of all SO recordings (FSSO). For the normally distributed parameters Cm, Gmax, slope factor, and latency, the highest CV values were found in FS and FSSO, intermediate in SA, and the lowest in SO. On average, SO variance accounted for 47% of the full-sample variance in these four parameters. Absolute sensitivity and LIC values were not normally distributed, and the differences in variability between SO and FS/FSSO groups were smaller than for the other four parameters. These results indicate two main sources of variability, intra-ommatidial and inter-individual. Inter-individual variability was investigated by exposing adult cockroaches to constant light or dark for several months. In both groups, the majority of CV measures for the six parameters decreased compared to control, indicating substantial contribution of phenotypic plasticity to inter-individual differences. Analysis of variability of resting potential and elementary voltage responses revealed that resting potential is mainly determined by the sustained Kv conductance, whereas voltage bump amplitude is mainly determined by current bump amplitude and Cm.
Keyphrases
  • heart rate
  • drinking water
  • blood pressure
  • magnetic resonance imaging
  • resting state
  • physical activity
  • risk assessment
  • functional connectivity
  • machine learning
  • optical coherence tomography
  • artificial intelligence