Effects of dietary xylanase supplementation on growth performance, intestinal health, and immune response of nursery pigs fed diets with reduced metabolizable energy.
Jonathan T BakerMarcos Elias DuarteSung Woo KimPublished in: Journal of animal science (2024)
This study aimed to investigate the effects of xylanase on growth performance and intestinal health of nursery pigs fed diets with reduced metabolizable energy (ME). One hundred ninety-two pigs at 8.7 kg ± 0.7 body weight (BW) after 7 d of weaning were allotted in a randomized complete block design with initial BW and sex as blocks. Eight dietary treatments consisted of 5 ME levels (3,400, 3,375, 3,350, 3,325, and 3,300 kcal ME/kg) below the NRC (2012) requirement and 4 levels of xylanase (0, 1,200, 2,400, and 3,600 XU/kg) to a diet with 3,300 kcal ME/kg. All pigs received their respective treatments for 35 d in 2 phases, pre-starter (14 d) and starter (21 d). On day 35, eight pigs in 3,400 kcal/kg (CON), 3,300 kcal/kg (LE), and 3,300 kcal/kg + 3,600 XU xylanase/kg (LEX) were euthanized to collect jejunal tissues and digesta for the evaluation of mucosa-associated microbiota, intestinal immune response, oxidative stress status, intestinal morphology, crypt cell proliferation, and digesta viscosity as well as ileal digesta to measure apparent ileal digestibility. Data were analyzed using the MIXED procedure on SAS 9.4. The LE increased (P < 0.05) jejunal digesta viscosity, tended to have decreased (P = 0.053) relative abundance of Prevotella, and tended to increase (P = 0.055) Lactobacillus. The LE also increased (P < 0.05) the concentration of protein carbonyl whereas malondialdehyde, villus height (VH), villus height to crypt depth ratio (VH:CD), apparent ileal digestibility (AID) of nutrients, and finally average daily feed intake were decreased (P < 0.05). The LE did not affect average daily gain (ADG). The LEX decreased (P < 0.05) digesta viscosity, increased (P < 0.05) the relative abundance of Prevotella, decreased (P < 0.05) Helicobacter, decreased (P < 0.05) the concentration of protein carbonyl, tended to increase (P = 0.065) VH, and decreased (P < 0.05) VH:CD and crypt cell proliferation. Moreover, LEX increased (P < 0.05) the AID of dry matter and gross energy and tended to increase (P = 0.099; P = 0.076) AID of crude protein, and ether extract. The LEX did not affect ADG but did tend to decrease (P = 0.070) fecal score during the starter phase. Overall, reducing ME negatively affected intestinal health parameters and nutrient digestibility without affecting growth. Supplementation of xylanase mitigated some of the negative effects observed by ME reduction on intestinal health and digestibility of nutrients without affecting growth.
Keyphrases
- immune response
- cell proliferation
- healthcare
- public health
- oxidative stress
- mental health
- body weight
- health information
- body mass index
- weight loss
- physical activity
- heavy metals
- protein protein
- toll like receptor
- gene expression
- cell cycle
- electronic health record
- social media
- intensive care unit
- amino acid
- computed tomography
- small molecule
- mechanical ventilation
- antibiotic resistance genes
- minimally invasive
- big data
- induced apoptosis
- ischemia reperfusion injury
- deep learning
- extracorporeal membrane oxygenation
- weight gain
- heat stress
- heat shock