Synergy between plasmonic nanocavities and random lasing modes: a tool to dequench plasmon quenched fluorophore emission.
Renu YadavSourabh PalSubhajit JanaShuvajit RoyKapil DebnathSamit Kumar RayMaruthi M BrundavanamShivakiran Bhaktha B NPublished in: Physical chemistry chemical physics : PCCP (2023)
Metal nanoparticles (NPs) can be employed to modify the emission level of a dye emitter by tailoring the spectral overlap of the optical gain and localized surface plasmon resonance (LSPR). In the case of plasmonic random lasers, tuning the spectral overlap by manipulating metal NPs changes the scattering properties of the system, which is crucial in random lasers (RLs). In order to overcome this drawback, the emitter gain spectrum across the LSPR is tuned by appropriately choosing various dye emitters. A system with Au nanoislands (NIs) randomly distributed on the surface of vertically aligned ZnO nanorods on a glass substrate coated with three different dye emitters has been employed to study the metal-gain interaction as a function of spectral overlap. It is observed that the photoluminescence is quenched in the presence of Au NIs for all the three dye emitters; however, the degree of quenching is found to be directly proportional to the extent of spectral overlap of the LSPR and the fluorophore emission spectrum, with the resonantly coupled systems exhibiting higher random lasing thresholds. However, a dequenching of the emission is observed under spectrally off-resonant conditions, leading to a lower threshold RL. The effect of tailoring of the metal-gain interaction on the coherent and incoherent intensity components of RL emission is studied to elucidate the contrasting results of photoluminescence and RL emission. As the optical gain shifts away from the LSPR peak, the RL emission is dominated by the coherent intensity. The speckle-like field distributions of the RL modes couple to the plasmonic nanocavities along with a reduced absorption loss for the off-resonant case, leading to an enhanced stimulated emission. Hence, a synergy between random laser modes, plasmonic nanocavities and optimum spectral overlap has been utilized as a tool to dequench the plasmon quenched fluorophore emission.