Login / Signup

Grain Quality Characterization of Hybrid Rice Restorer Lines with Resilience to Suboptimal Temperatures during Filling Stage.

Xuedan LuLu WangYunhua XiaoFeng WangGuilian ZhangWenbang TangHuabing Deng
Published in: Foods (Basel, Switzerland) (2022)
Rice ( Oryza sativa L.) is a staple food that is consumed worldwide, and hybrid rice has been widely employed in many countries to greatly increase yield. However, the frequency of extreme temperature events is increasing, presenting a serious challenge to rice grain quality. Improving hybrid rice grain quality has become crucial for ensuring consumer acceptance. This study compared the differences in milling quality, appearance quality, and physical and chemical starch properties of rice grains of five restorer lines (the male parent of hybrid rice) when they encountered naturally unfavorable temperatures during the filling period under field conditions. High temperatures (HTs) and low temperatures (LTs) had opposite effects on grain quality, and the effect was correlated with rice variety. Notably, R751, R313, and Yuewangsimiao (YWSM) were shown to be superior restorer lines with good resistance to both HT and LT according to traits such as head rice rate, chalkiness degree, chalky rice rate, amylose content, alkali spreading value, and pasting properties. However, Huazhan and 8XR274 were susceptible to sub-optimal temperatures at the grain-filling stage. Breeding hybrid rice with adverse-temperature-tolerant restorer lines can not only ensure high yield via heterosis but also produce superior grain quality. This could ensure the quantity and taste of rice as a staple food in the future, when extreme temperatures will occur increasingly frequently.
Keyphrases
  • quality improvement
  • climate change
  • depressive symptoms
  • dna methylation
  • genome wide
  • drug induced
  • optic nerve