Optically Mediated Hydrogel-Based Ionic Diode.
Weijia RenHouchao JingShengyong DingJunyan DanZhijun XuTongkun GuoHua WeiYue LiuYaqing LiuPublished in: Small (Weinheim an der Bergstrasse, Germany) (2024)
Ionic diodes with environmentally modulated ion-rectifying characteristics have attracted much attention and show great promise in the construction of smart devices with environmental adaptability. One immediate challenge is to integrate stimuli responsiveness and ion rectification into one single ionic diode, which requires a close cooperation of chemical principles and device technologies. Herein, an ionic diode based on a photoresponsive hydrogel with optically mediated ion-rectifying performances is introduced. Relying on the photoresponsive concentration of proton in the hydrogel, the ionic current rectification can be prominently enhanced upon ultraviolet (UV) irradiation. A maximum ionic current rectification ratio of the optically mediated ionic diode about 4 × 10 5 is achieved. Furthermore, the hydrogel-based diode can serve as an AND logic gate operated by UV light and voltage bias as two independent inputs. As a proof of concept, to use the optically mediated diode is achieved to modulate the feedback of a robot with logic behaviors. This work provides a novel and valuable strategy for designing functional hydrogel-based devices with the integration of stimuli-responsiveness and logic signal processing through chemical approaches.