Effect of boric acid on poly vinyl alcohol- tannin blend and its application as water-based wood adhesive.
Ravindra V GadhaveVineeth S KPritam V DhawalePradeep T GadekarPublished in: Designed monomers and polymers (2020)
The work presented here focusses on developing adhesive by blending tannin and polyvinyl alcohol (PVA) in water. To furthermore enhance the properties crosslinking is carried by using boric acid at varying concentrations. Presence of free hydroxyl groups in PVA and tannin acts as a site for crosslinking reaction. The empty p orbital of trivalent boron atom attracts nucleophilic hydroxyl groups of PVA and tannin, hence are expected to form crosslinks. The interaction of boric acid with the blend was confirmed by FTIR spectra studies. The acidic pH favoured the reaction and its effects were observed by increase in viscosity and glass transition temperature (Tg). Films cased with the crosslinked blend demonstrated less hydrophilic behaviour from water contact angle test also increment in pencil hardness value and stress-bearing capacity. Adhesive performance properties like wet tack and time-dependent tensile lap shear strength on softwood and hardwood specimens were evaluated. The crosslinking-enhanced cohesion by reducing the free volumes between the chains and due to this, enhancement in tensile strength on bonded wood substrates was observed. Overall, it was found that the adhesive prepared by crosslinking PVA/tannin blend with boric acid is suitable for wood adhesive application.