The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency.
Xiaotong LiJustin M HoffmanMercouri G KanatzidisPublished in: Chemical reviews (2021)
Two-dimensional (2D) halide perovskites have emerged as outstanding semiconducting materials thanks to their superior stability and structural diversity. However, the ever-growing field of optoelectronic device research using 2D perovskites requires systematic understanding of the effects of the spacer on the structure, properties, and device performance. So far, many studies are based on trial-and-error tests of random spacers with limited ability to predict the resulting structure of these synthetic experiments, hindering the discovery of novel 2D materials to be incorporated into high-performance devices. In this review, we provide guidelines on successfully choosing spacers and incorporating them into crystalline materials and optoelectronic devices. We first provide a summary of various synthetic methods to act as a tutorial for groups interested in pursuing synthesis of novel 2D perovskites. Second, we provide our insights on what kind of spacer cations can stabilize 2D perovskites followed by an extensive review of the spacer cations, which have been shown to stabilize 2D perovskites with an emphasis on the effects of the spacer on the structure and optical properties. Next, we provide a similar explanation for the methods used to fabricate films and their desired properties. Like the synthesis section, we will then focus on various spacers that have been used in devices and how they influence the film structure and device performance. With a comprehensive understanding of these effects, a rational selection of novel spacers can be made, accelerating this already exciting field.