Login / Signup

Specially Designed Polyaniline/Polypyrrole Ink for a Fully Printed Highly Sensitive pH Microsensor.

Miguel ZeaRobert TexidóRosa VillaSalvador BorrósGemma Gabriel
Published in: ACS applied materials & interfaces (2021)
pH sensing for healthcare applications requires sensors with mechanically stable materials of high sensitivity and high reproducibility combined with low-cost fabrication technologies. This work proposes a fully printed pH sensor based on a specially formulated conducting polymer deposited on a microelectrode in a flexible substrate. A formulation, which combined polyaniline (PANI) and polypyrrole (PPy) with integrated polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), was specially prepared to be printed by inkjet printing (IJP). The sensor has good sensitivity in the physiological region (pH 7-7.5) key for the healthcare biosensor. This mixture printed over a commercial gold ink, which has a singular chemical functionalization with phthalocyanine (Pc), increased the sensor sensitivity, showing an excellent reproducibility with a linear super-Nernstian response (81.2 ± 0.5 mV/pH unit) in a wide pH range (pH 3-10). This new ink together with the IJP low-cost technique opens new opportunities for pH sensing in the healthcare field with a single device, which is disposable, highly sensitive, and stable in the whole pH range.
Keyphrases
  • low cost
  • healthcare
  • drug delivery
  • mass spectrometry
  • molecularly imprinted
  • carbon nanotubes
  • solid phase extraction
  • liquid chromatography
  • tissue engineering
  • tandem mass spectrometry