Login / Signup

Low-Cost Chlorophyll Fluorescence Imaging for Stress Detection.

Reeve LegendreNicholas T BasingerMarc W van Iersel
Published in: Sensors (Basel, Switzerland) (2021)
Plants naturally contain high levels of the stress-responsive fluorophore chlorophyll. Chlorophyll fluorescence imaging (CFI) is a powerful tool to measure photosynthetic efficiency in plants and provides the ability to detect damage from a range of biotic and abiotic stresses before visible symptoms occur. However, most CFI systems are complex, expensive systems that use pulse amplitude modulation (PAM) fluorometry. Here, we test a simple CFI system, that does not require PAM fluorometry, but instead simply images fluorescence emitted by plants. We used this technique to visualize stress induced by the photosystem II-inhibitory herbicide atrazine. After applying atrazine as a soil drench, CFI and color images were taken at 15-minute intervals, alongside measurements from a PAM fluorometer and a leaf reflectometer. Pixel intensity of the CFI images was negatively correlated with the quantum yield of photosystem II (ΦPSII) (p < 0.0001) and positively correlated with the measured reflectance in the spectral region of chlorophyll fluorescence emissions (p < 0.0001). A fluorescence-based stress index was developed using the reflectometer measurements based on wavelengths with the highest (741.2 nm) and lowest variability (548.9 nm) in response to atrazine damage. This index was correlated with ΦPSII (p < 0.0001). Low-cost CFI imaging can detect herbicide-induced stress (and likely other stressors) before there is visual damage.
Keyphrases