Cross-Sampling Rate Transfer Learning for Enhanced Raw EEG Deep Learning Classifier Performance in Major Depressive Disorder Diagnosis.
Charles A EllisRobyn L MillerVince D CalhounPublished in: bioRxiv : the preprint server for biology (2023)
Transfer learning offers a route for developing robust deep learning models on small raw electroencephalography (EEG) datasets. Nevertheless, the utility of applying representations learned from large datasets with a lower sampling rate to smaller datasets with higher sampling rates remains relatively unexplored. In this study, we transfer representations learned by a convolutional neural network on a large, publicly available sleep dataset with a 100 Hertz sampling rate to a major depressive disorder (MDD) diagnosis task at a sampling rate of 200 Hertz. Importantly, we find that the early convolutional layers contain representations that are generalizable across tasks. Moreover, our approach significantly increases mean model accuracy from 82.33% to 86.99%, increases the model's use of lower frequencies, (θ-band), and increases its robustness to channel loss. We expect this analysis to provide useful guidance and enable more widespread use of transfer learning in EEG deep learning studies.