Telomeric 8-oxo-guanine drives rapid premature senescence in the absence of telomere shortening.
Ryan P BarnesMariarosaria De RosaSanjana A ThosarAriana C DetwilerVera RoginskayaBennett Van HoutenMarcel P BruchezJacob Stewart-OrnsteinPatricia L OpreskoPublished in: Nature structural & molecular biology (2022)
Oxidative stress is a primary cause of cellular senescence and contributes to the etiology of numerous human diseases. Oxidative damage to telomeric DNA has been proposed to cause premature senescence by accelerating telomere shortening. Here, we tested this model directly using a precision chemoptogenetic tool to produce the common lesion 8-oxo-guanine (8oxoG) exclusively at telomeres in human fibroblasts and epithelial cells. A single induction of telomeric 8oxoG is sufficient to trigger multiple hallmarks of p53-dependent senescence. Telomeric 8oxoG activates ATM and ATR signaling, and enriches for markers of telomere dysfunction in replicating, but not quiescent cells. Acute 8oxoG production fails to shorten telomeres, but rather generates fragile sites and mitotic DNA synthesis at telomeres, indicative of impaired replication. Based on our results, we propose that oxidative stress promotes rapid senescence by producing oxidative base lesions that drive replication-dependent telomere fragility and dysfunction in the absence of shortening and shelterin loss.
Keyphrases
- endothelial cells
- dna damage
- oxidative stress
- dna damage response
- induced apoptosis
- dna repair
- stress induced
- circulating tumor
- diabetic rats
- single molecule
- ischemia reperfusion injury
- induced pluripotent stem cells
- cell free
- liver failure
- endoplasmic reticulum stress
- cell cycle
- respiratory failure
- intensive care unit
- signaling pathway
- cell proliferation
- quantum dots
- mechanical ventilation