Login / Signup

Identification of Potential Citrate Metabolism Pathways in Carnobacterium maltaromaticum.

Heng LiNancy E RamiaFrédéric BorgesAnne-Marie Revol-JunellesFinn Kvist VogensenJørgen Johannes Leisner
Published in: Microorganisms (2021)
In the present study, we describe the identification of potential citrate metabolism pathways for the lactic acid bacterium (LAB) Carnobacterium maltaromaticum. A phenotypic assay indicated that four of six C. maltaromaticum strains showed weak (Cm 6-1 and ATCC 35586) or even delayed (Cm 3-1 and Cm 5-1) citrate utilization activity. The remaining two strains, Cm 4-1 and Cm 1-2 gave negative results. Additional analysis showed no or very limited utilization of citrate in media containing 1% glucose and 22 or 30 mM citrate and inoculated with Cm 6-1 or ATCC 35586. Two potential pathways of citrate metabolism were identified by bioinformatics analyses in C. maltaromaticum including either oxaloacetate (pathway 1) or tricarboxylic compounds such as isocitrate and α-ketoglutarate (pathway 2) as intermediates. Genes encoding pathway 1 were present in two out of six strains while pathway 2 included genes present in all six strains. The two potential citrate metabolism pathways in C. maltaromaticum may potentially affect the sensory profiles of milk and soft cheeses subjected to growth with this species.
Keyphrases
  • escherichia coli
  • bioinformatics analysis
  • human health
  • genome wide
  • risk assessment
  • blood glucose
  • dna methylation
  • blood pressure