Login / Signup

Highly Efficient Photocatalytic Reduction of CO 2 to CO by In Situ Formation of a Hybrid Catalytic System Based on Molecular Iron Quaterpyridine Covalently Linked to Carbon Nitride.

Yue WeiLingjing ChenHuan ChenLirong CaiGuiping TanYongfu QiuQuanjun XiangGui ChenTai-Chu LauMarc Robert
Published in: Angewandte Chemie (International ed. in English) (2022)
Efficient and selective photocatalytic CO 2 reduction was obtained within a hybrid system that is formed in situ via a Schiff base condensation between a molecular iron quaterpyridine complex bearing an aldehyde function and carbon nitride. Irradiation (blue LED) of an CH 3 CN solution containing 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH), triethylamine (TEA), Feqpy-BA (qpy-BA=4-([2,2':6',2'':6'',2'''-quaterpyridin]-4-yl)benzaldehyde) and C 3 N 4 resulted in CO evolution with a turnover number of 2554 and 95 % selectivity. This hybrid catalytic system unlocks covalent linkage of molecular catalysts with semiconductor photosensitizers via Schiff base reaction for high-efficiency photocatalytic reduction of CO 2 , opening a pathway for diverse photocatalysis.
Keyphrases