Login / Signup

Hyperspectral Imaging Combined with Artificial Intelligence in the Early Detection of Esophageal Cancer.

Cho-Lun TsaiArvind MukundanChen-Shuan ChungYi-Hsun ChenYao-Kuang WangTsung-Hsien ChenYu-Sheng TsengChien-Wei HuangI-Chen WuHsiang-Chen Wang
Published in: Cancers (2021)
This study uses hyperspectral imaging (HSI) and a deep learning diagnosis model that can identify the stage of esophageal cancer and mark the locations. This model simulates the spectrum data from the image using an algorithm developed in this study which is combined with deep learning for the classification and diagnosis of esophageal cancer using a single-shot multibox detector (SSD)-based identification system. Some 155 white-light endoscopic images and 153 narrow-band endoscopic images of esophageal cancer were used to evaluate the prediction model. The algorithm took 19 s to predict the results of 308 test images and the accuracy of the test results of the WLI and NBI esophageal cancer was 88 and 91%, respectively, when using the spectral data. Compared with RGB images, the accuracy of the WLI was 83% and the NBI was 86%. In this study, the accuracy of the WLI and NBI was increased by 5%, confirming that the prediction accuracy of the HSI detection method is significantly improved.
Keyphrases