A salamander that chews using complex, three-dimensional mandible movements.
Daniel SchwarzNicolai KonowYonas Tolosa RobaEgon HeissPublished in: The Journal of experimental biology (2020)
Most non-mammal tetrapods have a hinge-like jaw operation restricted to vertical opening and closing movements. Many mammal jaw joints, by contrast, operate in more complex, three-dimensional (3D) ways, involving not only vertical but also propalinal (rostro-caudal) and transverse (lateral) movements. Data on intraoral food processing in lissamphibians and sauropsids has prompted a generally accepted view that these groups mostly swallow food unreduced, and that in those cases where lissamphibians and sauropsids chew, they mostly use simple vertical jaw movements for food processing. The exception to this generally accepted view is the occurrence of some propalinal chewing in sauropsids. We combined 3D kinematics and morphological analyses from biplanar high-speed video fluoroscopy and micro-computed tomography to determine how the paedomorphic salamander Siren intermedia treats captured food. We discovered not only that S. intermedia uses intraoral food processing but also that the elaborated morphology of its jaw joint facilitates mandibular motions in all three planes, resulting in complex 3D chewing. Thus, our data challenge the commonly held view that complex 3D chewing movements are exclusive to mammals, by suggesting that such mechanisms might have evolved early in the tetrapod evolution.