Login / Signup

Synthesis and properties of hyperbranched polymers for white polymer light-emitting diodes.

Xuefeng LiHaocheng ZhaoLong GaoXiaoling XieWeixuan ZhangMixue WangYuling WuYanqin MiaoHua WangBingshe Xu
Published in: RSC advances (2019)
In this work, a series of hyperbranched copolymers with fluorene- alt -carbazole as the branches, three-dimensional-structured spiro[3.3]heptane-2,6-dispirofluorene (SDF) as the core, and iridium 1-(4-bromophenyl)-isoquinoline (acetylacetone) (Ir(Brpiq) 2 acac) as the dimming group were synthesized by one-pot Suzuki polycondensation for white emission. All copolymers show great thermal stabilities and high hole-transporting ability due to the introduction of the carbazole unit. The hyperbranched structures for copolymers can suppress the interchain interactions efficiently, and help to form amorphous films. The fabricated polymer light-emitting devices (PLEDs) based on the above synthesized copolymers realize good white light emission, and achieve high electroluminescence (EL) performance. For example, for the optimized PLED, the maximum luminance and current efficiency reach 6210 cd m -2 and 6.30 cd A -1 , respectively, indicating the synthesized hyperbranched copolymers have potential application in solution-processable white polymer light-emitting diodes.
Keyphrases
  • light emitting
  • solid state
  • room temperature
  • high resolution
  • oxide nanoparticles
  • climate change
  • perovskite solar cells
  • mass spectrometry
  • carbon nanotubes