Carbene-Decorated Geometrically Constrained Borylenes for Bond Activations.
Barsha ChakrabortyDaniel González-PinardoIsrael FernándezAshwini K PhukanPublished in: Inorganic chemistry (2024)
While metal-ligand cooperativity is well-known, studies on element-ligand cooperativity involving main group species are comparatively much less explored. In this study, we computationally designed a few geometrically constrained borylenes supported by different carbenes. Our density functional theory studies indicate that they possess enhanced nucleophilicity as well as electrophilicity, thus rendering them promising candidates for exhibiting borylene-ligand cooperativity. The cooperation between the boron and adjacent carbene centers facilitates different bond activation processes, including the cycloaddition of acetylene across the boron-carbene bond as well as B-H/Si-H bond activation reactions, which have been analyzed in detail. To the best of our knowledge, the borylenes proposed in this study represent the first examples of theoretically proposed geometrically constrained bis(carbene)-stabilized borylenes capable of cooperative activation of enthalpically strong bonds.