Login / Signup

A fast hemostatic and enhanced photodynamic 2-dimensional metal-organic framework loaded aerogel patch for wound management.

Yang WangXiaolin NieZihao LvYi HaoQingqing WangQufu Wei
Published in: Journal of colloid and interface science (2023)
Achieving rapid hemostasis and highly effective antibacterial holds significant importance in the early-stage treatment of wounds. In this study, a hybrid aerogel patch comprising carbon quantum dots (CQDs) modified 2-dimensional (2D) porphyrinic metal-organic framework (MOF) nanosheets was designed by incorporating gelatin methacrylate (GelMA) and polyacrylamide (PAM) based matrix. On one hand, CQDs were stably doped onto the surface of the 2D MOF nanosheets, thereby enhancing the photodynamic activity through fluorescence resonance energy transfer (FRET) process. After the preparation of hybrid aerogel patch, the patch loaded with CQDs-doped 2D MOF exhibited excellent photodynamic bactericidal activity against Gram-positive Staphylococcus aureus (>99.99 %) and Gram-negative Escherichia coli (>99.99 %). On the other hand, the hybrid patch with highly porous and absorbent structure can rapidly absorb blood to aggregate clotting components and form a hydration barrier covering the wound to enhance hemostasis. Besides, the hemolysis and cytotoxicity assays demonstrated a good biocompatibility of this designed patch. In summary, this 2D MOF-loaded aerogel patch holds a potential to achieve rapid hemostasis and effective anti-infection in the early-stage treatment of traumatic wounds.
Keyphrases