Three-dimensional racetrack memory devices designed from freestanding magnetic heterostructures.
Ke GuYicheng GuanBinoy Krishna HazraHakan DenizAndrea MiglioriniWenjie ZhangStuart S P ParkinPublished in: Nature nanotechnology (2022)
The fabrication of three-dimensional nanostructures is key to the development of next-generation nanoelectronic devices with a low device footprint. Magnetic racetrack memory encodes data in a series of magnetic domain walls that are moved by current pulses along magnetic nanowires. To date, most studies have focused on two-dimensional racetracks. Here we introduce a lift-off and transfer method to fabricate three-dimensional racetracks from freestanding magnetic heterostructures grown on a water-soluble sacrificial release layer. First, we create two-dimensional racetracks from freestanding films transferred onto sapphire substrates and show that they have nearly identical characteristics compared with the films before transfer. Second, we design three-dimensional racetracks by covering protrusions patterned on a sapphire wafer with freestanding magnetic heterostructures. We demonstrate current-induced domain-wall motion for synthetic antiferromagnetic three-dimensional racetracks with protrusions of up to 900 nm in height. Freestanding magnetic layers, as demonstrated here, may enable future spintronic devices with high packing density and low energy consumption.