Login / Signup

Statistical optimization of chromium (VI) reduction using response surface methodology (RSM) by newly isolated Stenotrophomonas sp. (a novel strain).

Osama ShreifAmr M ShehabeldineMohammed Abu-ElghaitAhmed A HamedSaid E Desouky
Published in: Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine (2021)
Isolation of Microorganisms capable of reducing toxic chromium (VI) into less toxic one (Cr (III)) has been given attention due to their significance in bioremediation of the contaminated sites. In the present study, Stenotrophomonas sp. Crt94-4A an isolated strain from tannery wastewater and identified genetically by 16s rRNA gene sequencing was able to grow at concentrations up to 354 mg/L of Cr (VI). The results revealed 1% (w/v) NaCl, 2% (v/v) (2 × 106 CFU) inoculum size, and PH 7 in culture containing glucose and peptone as carbon and nitrogen sources respectively were the best conditions for Cr (VI) reduction. Statistical optimization was performed using Plackett-Burman design where peptone, inoculum size, and NaCl had significant effects on Cr (VI) reduction which were tested by three factors Box-Behnken design (BBD) to determine their correlation. The reduction capacity of Cr (VI) by Stenotrophomonas Sp. Crt94-4A was increased from 82, 55, and 23 to 96, 76, and 45% at 88.5, 177 and 354 mg/L of Cr (VI) respectively, which make this strain a good candidate for bioremediation of Cr (VI).
Keyphrases