Combination of Plasma Biomarkers and Clinical Data for the Detection of Myocardial Fibrosis or Aggravation of Heart Failure Symptoms in Heart Failure with Preserved Ejection Fraction Patients.
Cho-Kai WuMao-Yuan M SuYi-Fan WuJuey-Jen HwangLian-Yu LinPublished in: Journal of clinical medicine (2018)
Background: Heart failure with preserved ejection fraction (HFpEF) is characterized by heart failure symptoms and structural change (including fibrosis). The relationship between novel biomarkers and the above components remains unclear. Methods: Seventy-seven HFpEF patients were recruited. All patients underwent echocardiography with tissue doppler imaging, cardiac magnetic resonance imaging (CMRI), and measurement of plasma inflammatory, remodelling, endothelial function, and heart failure biomarker levels. Myocardial fibrosis was defined by CMRI-extracellular volume. Forward conditional logistic regression was applied to demonstrate the determinants of myocardial fibrosis or heart failure symptoms. Results: The levels of growth differentiation factor, tissue inhibitor of metalloproteinase (TIMP)-1, galectin-3, and N-terminal pro b-type natriuretic peptide (NT-proBNP) were significantly higher in patients with more myocardial fibrosis. Matrix metalloproteinase-2 (MMP-2) and galectin-3 were independent markers of ECV. After adjusting for confounding factors, plasma galectin-3 and MMP-2 levels were correlated with myocardial fibrosis levels (odds ratio (OR): 1.05, 95% confidence interval (CI): 1.02 to 1.09, p = 0.005 and OR: 2.11, 95% CI: 1.35⁻3.28, respectively), while NT-proBNP level only was associated with heart failure symptoms. We developed a score system consisted of biomarkers and clinical parameters. The area under the curve of the scoring system receiver operating characteristic curve is 0.838 to predict the degree of myocardial diffuse fibrosis. Conclusions: In conclusion, we found that galectin-3 and MMP-2 were significantly associated with global cardiac fibrosis in HFpEF patients. We also combined plasma biomarkers and clinical data to identify HFpEF patients with more severe cardiac fibrosis.
Keyphrases
- heart failure
- left ventricular
- end stage renal disease
- magnetic resonance imaging
- newly diagnosed
- ejection fraction
- chronic kidney disease
- peritoneal dialysis
- cardiac resynchronization therapy
- atrial fibrillation
- liver fibrosis
- mass spectrometry
- early onset
- machine learning
- oxidative stress
- blood flow
- sensitive detection
- high grade