Login / Signup

One, two or more species? Mitonuclear discordance and species delimitation.

Laurence Després
Published in: Molecular ecology (2019)
Delimiting species boundaries is central to understand ecological and evolutionary processes, and to monitor biodiversity patterns over time and space. Yet, most of our current knowledge on animal diversity and phylogeny relies on morphological and mitochondrial (mt) DNA variation, a popular molecular marker also used as a barcode to assign samples to species. For morphologically undistinguishable sympatric species (cryptic species), the congruence of several independent markers is necessary to define separate species. Nuclear markers are becoming more accessible, and have confirmed that cryptic species are widespread in all animal phyla (Fišer, Robinson, & Malard, 2018). However, striking differences between the mitochondrial and nuclear variation patterns are also commonly found within single species. Mitonuclear discordance can result from incomplete lineage sorting, sex-biased dispersal, asymmetrical introgression, natural selection or Wolbachia-mediated genetic sweeps. But more generally, the distinct mode of transmission of these two types of markers (maternal vs. biparental) is sufficient to explain their distinct sensitivity to purely demographic events such as spatial range and population size fluctuations over time. In a From the Cover manuscript in this issue of Molecular Ecology, Hijonosa et al. (2019) show that highly divergent mtDNA lineages coexist in a widespread European butterfly (Figure 1). None of the hundreds of nuclear markers analyzed was associated with mt lineages, nor was Wolbachia variation. These findings rule out the presence of cryptic species but shed light on complex demographic history of lineage divergence/fusion during the Pleistocene climatic fluctuations, and pave the way to a better integration of both mt and nuclear information in demographic models.
Keyphrases
  • genetic diversity
  • pregnant women
  • body mass index
  • zika virus
  • dna methylation
  • climate change
  • social media
  • circulating tumor
  • human health
  • cell fate