MXene-Based Dendrite-Free Potassium Metal Batteries.
Xiao TangDong ZhouPeng LiXin GuoBing SunHao LiuKang YanYury GogotsiGuoxiu WangPublished in: Advanced materials (Deerfield Beach, Fla.) (2019)
Potassium metal batteries are considered as attractive alternatives beyond lithium-ion batteries. However, uncontrollable dendrite growth on the potassium metal anode has restrained their practical applications. A high-performance potassium anode achieved by confining potassium metal into a titanium-deficient nitrogen-containing MXene/carbon nanotube freestanding scaffold is reported. The high electronic transport and fast potassium diffusion in this scaffold enable reduced local current density and homogeneous ionic flux during plating/stripping processes. Furthermore, as verified by theoretical calculations and experimental investigations, such "potassium-philic" MXene sheets can induce the nucleation of potassium, and guide potassium to uniformly distribute in the scaffold upon cycling. Consequently, the as-developed potassium metal anodes exhibit a dendrite-free morphology with high Coulombic efficiency and long cycle life during plating/stripping processes. Such anodes also deliver significantly improved electrochemical performances in potassium-sulfur batteries compared with bare potassium metal anodes. This work can provide a new avenue for developing potassium metal-based batteries.