Login / Signup

Optimal phase synchronization in networks of phase-coherent chaotic oscillators.

P S SkardalRicardo Sevilla-EscobozaV P Vera-ÁvilaJ M Buldú
Published in: Chaos (Woodbury, N.Y.) (2017)
We investigate the existence of an optimal interplay between the natural frequencies of a group of chaotic oscillators and the topological properties of the network they are embedded in. We identify the conditions for achieving phase synchronization in the most effective way, i.e., with the lowest possible coupling strength. Specifically, we show by means of numerical and experimental results that it is possible to define a synchrony alignment function J(ω,L) linking the natural frequencies ωi of a set of non-identical phase-coherent chaotic oscillators with the topology of the Laplacian matrix L, the latter accounting for the specific organization of the network of interactions between oscillators. We use the classical Rössler system to show that the synchrony alignment function obtained for phase oscillators can be extended to phase-coherent chaotic systems. Finally, we carry out a series of experiments with nonlinear electronic circuits to show the robustness of the theoretical predictions despite the intrinsic noise and parameter mismatch of the electronic components.
Keyphrases
  • ionic liquid