In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation.
Max J HülseyBin ZhangZhirui MaHiroyuki AsakuraDavid A DoWei ChenTsunehiro TanakaPeng ZhangZili WuNing YanPublished in: Nature communications (2019)
Single-atom catalysts have recently been applied in many applications such as CO oxidation. Experimental in situ investigations into this reaction, however, are limited. Hereby, we present a suite of operando/in situ spectroscopic experiments for structurally well-defined atomically dispersed Rh on phosphotungstic acid during CO oxidation. The identification of several key intermediates and the steady-state catalyst structure indicate that the reactions follow an unconventional Mars-van Krevelen mechanism and that the activation of O2 is rate-limiting. In situ XPS confirms the contribution of the heteropoly acid support while in situ DRIFT spectroscopy consolidates the oxidation state and CO adsorption of Rh. As such, direct observation of three key components, i.e., metal center, support and substrate, is achieved, providing a clearer picture on CO oxidation on atomically dispersed Rh sites. The obtained information are used to engineer structurally similar catalysts that exhibit T20 values up to 130 °C below the previously reported Rh1/NPTA.