Coal waste-derived synthesis of yellow oxidized graphene quantum dots with highly specific superoxide dismutase activity: characterization, kinetics, and biological studies.
Tushar DasSubrata DasPrakash KumarBetty C ADebabrata MandalPublished in: Nanoscale (2023)
The disintegration of coal-based precursors for the scalable production of nanozymes relies on the fate of solvothermal pyrolysis. Herein, we report a novel economic and scalable strategy to fabricate yellow luminescent graphene quantum dots (YGQDs) by remediating unburnt coal waste (CW). The YGQDs (size: 7-8 nm; M.W: 3157.9 Da) were produced using in situ "anion-radical" assisted bond cleavage in water (within 8 h; at 121 °C) with yields of ∼87%. The presence of exposed surface and edge groups, such as COOH, C-O-C, and O-H, as structural defects accounted for its high fluorescence with ε max ∼530 nm at pH 7. Besides, these defects also acted as radical stabilizers, demonstrating prominent anti-oxidative activity of ∼4.5-fold higher than standard ascorbic acid (AA). In addition, the YGQDs showed high biocompatibility towards mammalian cells, with 500 μM of treatment dose showing <15% cell death. The YGQDs demonstrated specific superoxide dismutase (SOD) activity wherein 15 μM YGQDs equalled the activity of 1-unit biological SOD (bSOD), measured using the pyrogallol assay. The K m for YGQDs was ∼10-fold higher than that for bSOD. However, the YGQDs retained their SOD activity in harsh conditions like high temperatures or denaturing reactions, where the activity of bSOD is completely lost. The binding affinity of YGQDs for superoxide ions, measured from isothermal calorimetry (ITC) studies, was only 10-fold lower than that of bSOD ( K d of 586 nM vs. 57.3 nM). Further, the pre-treatment of YGQDs (∼10-25 μM) increased the cell survivability to >75-90% in three cell lines during ROS-mediated cell death, with the highest survivability being shown for C6-cells. Next, the ROS-induced apoptosis in C6-cells (model for neurodegenerative diseases study), wherein YGQDs uptake was confirmed by confocal microscopy, showed ∼5-fold apoptosis alleviation with only 5 μM pretreatment. The YGQDs also restored the expression of pro-inflammatory Th1 cytokines (TNF-α, IFN-γ, IL-6) and anti-inflammatory Th2 cytokines (IL-10) to their basal levels, with a net >3-fold change observed. This further explains the molecular mechanism for the antioxidant property of YGQDs. The high specific SOD activity associated with YGQDs may provide the cheapest alternative source for producing large-scale SOD-based nanozymes that can treat various oxidative stress-linked disorders/diseases.
Keyphrases
- immune response
- induced apoptosis
- cell death
- oxidative stress
- cell cycle arrest
- quantum dots
- endoplasmic reticulum stress
- signaling pathway
- anti inflammatory
- stem cells
- rheumatoid arthritis
- risk assessment
- hydrogen peroxide
- amyotrophic lateral sclerosis
- ischemia reperfusion injury
- sensitive detection
- high throughput
- mesenchymal stem cells
- mass spectrometry
- single molecule
- transcription factor
- single cell
- long non coding rna
- heat shock
- nucleic acid
- heat shock protein