Login / Signup

Greatly Enhanced Faradic Capacities of 3D Porous Mn3O4/G Composites as Lithium-Ion Anodes and Supercapacitors by C-O-Mn Bonding.

Shuang LiLi-Li YuYu-Ting ShiJun FanRong-Bing LiGai-Di FanWei-Ling XuJing-Tai Zhao
Published in: ACS applied materials & interfaces (2019)
Through C-O-Mn bonding, graphene nanosheets are homogeneously dispersed in porous Mn3O4 to take full advantages of porous Mn3O4 and graphene nanosheets, making the as-formed three-dimensional porous Mn3O4/reduced graphene oxide (rGO) composite exhibit good electrochemical performance. Besides, C-O-Mn bonding is demonstrated to greatly promote the Faradic reactions of the composite, resulting in the enhancement of its real capacity in supercapacitor (SC) electrodes as well as lithium-ion battery (LIB) anodes. By simply fine-tuning the content of graphene (<7 wt %), the composite with 2.8 wt % of rGO delivers a high capacitance of 315 F g-1 at 0.5 A g-1 with a high rate capability of 64.7% at 30 A g-1 and an excellent cycling stability of 105% (5 A g-1, 5000 cycles) as an SC electrode. Also, the one with 6.9 wt % rGO can present a reversible capacity of more than 1500 mAh g-1 at 0.05 A g-1 as the LIB anode, the highest value reported to date, which remains 561 mAh g-1 at 1 A g-1.
Keyphrases
  • reduced graphene oxide
  • metal organic framework
  • gold nanoparticles
  • room temperature
  • transition metal
  • ionic liquid
  • carbon nanotubes
  • air pollution
  • highly efficient
  • ion batteries