Login / Signup

The C-terminal tail of the bacterial translocation ATPase SecA modulates its activity.

Mohammed JamshadTimothy J KnowlesScott A WhiteDouglas G WardFiyaz MohammedKazi Fahmida RahmanMax WynneGareth W HughesGuenter KramerBernd Gerhard BukauDamon Huber
Published in: eLife (2019)
In bacteria, the translocation of proteins across the cytoplasmic membrane by the Sec machinery requires the ATPase SecA. SecA binds ribosomes and recognises nascent substrate proteins, but the molecular mechanism of nascent substrate recognition is unknown. We investigated the role of the C-terminal tail (CTT) of SecA in nascent polypeptide recognition. The CTT consists of a flexible linker (FLD) and a small metal-binding domain (MBD). Phylogenetic analysis and ribosome binding experiments indicated that the MBD interacts with 70S ribosomes. Disruption of the MBD only or the entire CTT had opposing effects on ribosome binding, substrate-protein binding, ATPase activity and in vivo function, suggesting that the CTT influences the conformation of SecA. Site-specific crosslinking indicated that F399 in SecA contacts ribosomal protein uL29, and binding to nascent chains disrupts this interaction. Structural studies provided insight into the CTT-mediated conformational changes in SecA. Our results suggest a mechanism for nascent substrate protein recognition.
Keyphrases
  • binding protein
  • amino acid
  • protein protein
  • dna binding
  • molecular dynamics simulations
  • structural basis
  • small molecule
  • mass spectrometry
  • molecular dynamics