Login / Signup

Ellagic acid protects dopamine neurons from rotenone-induced neurotoxicity via activation of Nrf2 signalling.

Yi-Zheng WeiGuo-Fu ZhuChang-Qing ZhengJing-Jie LiShuo ShengDai-di LiGuo-Qing WangFeng Zhang
Published in: Journal of cellular and molecular medicine (2020)
Parkinson's disease (PD) is the second most prevalent central nervous system (CNS) degenerative disease. Oxidative stress is one of key contributors to PD. Nuclear factor erythroid-2-related factor 2 (Nrf2) is considered to be a master regulator of many genes involved in anti-oxidant stress to attenuate cell death. Therefore, activation of Nrf2 signalling provides an effective avenue to treat PD. Ellagic acid (EA), a natural polyphenolic contained in fruits and nuts, possesses amounts of pharmacological activities, such as anti-oxidant stress and anti-inflammation. Recent studies have confirmed EA could be used as a neuroprotective agent in neurodegenerative diseases. Here, mice subcutaneous injection of rotenone (ROT)-induced DA neuronal damage was performed to investigate EA-mediated neuroprotection. In addition, adult Nrf2 knockout mice and different cell cultures including MN9D-enciched, MN9D-BV-2 and MN9D-C6 cell co-cultures were applied to explore the underlying mechanisms. Results demonstrated EA conferred neuroprotection against ROT-induced DA neurotoxicity. Activation of Nrf2 signalling was involved in EA-mediated DA neuroprotection, as evidenced by the following observations. First, EA activated Nrf2 signalling in ROT-induced DA neuronal damage. Second, EA generated neuroprotection with the presence of astroglia and silence of Nrf2 in astroglia abolished EA-mediated neuroprotection. Third, EA failed to produce DA neuroprotection in Nrf2 knockout mice. In conclusion, this study identified EA protected against DA neuronal loss via an Nrf2-dependent manner.
Keyphrases