Login / Signup

Surface Functionalization of Ti6Al4V via Self-assembled Monolayers for Improved Protein Adsorption and Fibroblast Adhesion.

Abshar HasanVarun SaxenaLalit M Pandey
Published in: Langmuir : the ACS journal of surfaces and colloids (2018)
Although metallic biomaterials find numerous biomedical applications, their inherent low bioactivity and poor osteointegration had been a great challenge for decades. Surface modification via silanization can serve as an attractive method for improving the aforementioned properties of such substrates. However, its effect on protein adsorption/conformation and subsequent cell adhesion and spreading has rarely been investigated. This work reports the in-depth study of the effect of Ti6Al4V surface functionalization on protein adsorption and cell behavior. We prepared self-assembled monolayers (SAMs) of five different surfaces (amine, octyl, mixed [1:1 ratio of amine:octyl], hybrid, and COOH). Synthesized surfaces were characterized by Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy, contact angle goniometry, profilometry, and field emission scanning electron microscopy (FESEM). Quantification of adsorbed mass of bovine serum albumin (BSA) and fibronectin (FN) was determined on different surfaces along with secondary structure analysis. The adsorbed amount of BSA was found to increase with an increase in surface hydrophobicity with the maximum adsorption on the octyl surface while the reverse trend was detected for FN adsorption, having the maximum adsorbed mass on the COOH surface. The α-helix content of adsorbed BSA increased on amine and COOH surfaces while it decreased for other surfaces. Whereas increasing β-turn content of the adsorbed FN with the increase in the surface hydrophobicity was observed. In FN, RGD loops are located in the β-turn and consequently the increase in Δ adhered cells (%) was predominantly increased with the increasing Δ β-turn content (%). We found hybrid surfaces to be the most promising surface modifier due to maximum cell adhesion (%) and proliferation, larger nuclei area, and the least cell circularity. Bacterial density increased with the increasing hydrophobicity and was found maximum for the amine surface (θ = 63 ± 1°) which further decreased with the increasing hydrophobicity. Overall, modified surfaces (in particular hybrid surface) showed better protein adsorption and cell adhesion properties as compared to unmodified Ti6Al4V and can be potentially used for tissue engineering applications.
Keyphrases