Design and Optimization of Heat Treatment Process Parameters for High-Molybdenum-Vanadium High-Speed Steel for Rolls.
Jibing ChenYanfeng LiuYujie WangRong XuQianyu ShiJunsheng ChenYiping WuPublished in: Materials (Basel, Switzerland) (2023)
High-molybdenum-vanadium high-speed steel is a new type of high-hardenability tool steel with excellent wear resistance, castability, and high-temperature red hardness. This paper proposes a composition design of high-molybdenum-vanadium high-speed steel for rolls, and its specific chemical composition is as follows (wt.%): C2%, Mo7.0%, V7.0%, Si0.3%, Mn0.3%, Ni0.4%, Cr3.0%, and the rest of the iron. This design is characterized by the increase in molybdenum and vanadium in high-speed steel to replace traditional high-speed steel rolls with the tungsten element in order to reduce the heavy elements' tungsten-specific gravity segregation caused by centrifugal casting so that the roll performance is uniform and the stability of use is improved. JMatPro (version 7.0) simulation software is used for the composition design of high-molybdenum-vanadium high-speed steel. The phase composition diagram is analyzed under different temperatures. The content of different phases of the organization in different temperatures is also studied. The martensitic transformation temperature and different tempering temperatures with the different types of compounds and grain sizes are calculated. The process parameters of heat treatment of high-molybdenum-vanadium high-speed steel are optimized. The selection of carbon content and the temperature of M50 are calculated and optimized, and the results show that the range of pouring temperatures, quenching temperatures, annealing temperatures, and tempering temperatures are 1360~1410 °C, 1190~1200 °C, 818~838 °C, and 550~600 °C, respectively. Scanning electron microscope (SEM) analysis of the samples obtained by using the above heat treatment parameters is consistent with the simulation results, which indicates that the simulation has important reference significance for guiding the actual production.