Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O 2 and 92% N 2 . In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 μM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.
Keyphrases
- brain injury
- cerebral ischemia
- subarachnoid hemorrhage
- oxidative stress
- diabetic rats
- reactive oxygen species
- high glucose
- blood brain barrier
- spinal cord
- immune response
- nlrp inflammasome
- cell death
- heart failure
- white matter
- mass spectrometry
- endoplasmic reticulum stress
- transcription factor
- acute myocardial infarction
- type diabetes
- dna damage
- cell proliferation
- left ventricular
- single cell
- spinal cord injury
- adipose tissue
- metabolic syndrome
- endothelial cells
- acute coronary syndrome
- percutaneous coronary intervention
- coronary artery disease
- blood glucose
- single molecule
- gene therapy
- pi k akt
- glycemic control