Contact-Killing Antibacterial Polystyrene Polymerized Using a Quaternized Cationic Initiator.
Akiko JitsuhiroTomoki MaedaAkiko OgawaSayuri YamadaYuki KonoedaHiroki MaruyamaFuyuaki EndoMidori KitagawaKeishi TanimotoAtsushi HottaToshikazu TsujiPublished in: ACS omega (2024)
Contact-killing antibacterial materials are attracting attention owing to their ability for sustained antibacterial activity. However, contact-killing antibacterial polystyrene (PS) has not been extensively studied because its chemically stable structure impedes chemical modification. In this study, we developed an antibacterial PS sheet with a contact-killing surface using PS synthesized from 2,2'-azobis-[2-(1,3-dimethyl-4,5-dihydro-1 H -imidazol-3-ium-2-yl)]propane triflate (ADIP) as a radical initiator with cationic moieties. The PS sheet synthesized with ADIP (ADIP-PS) exhibited antibacterial activity in contrast to PS synthesized with other azo radical initiators. Surface ζ-potential measurements revealed that only ADIP-PS had a cationic surface, which contributed to its contact-killing antibacterial activity. The ADIP-PS sheets also exhibited antibacterial activity after washing. In contrast, PS sheets containing silver, a typical leachable antibacterial agent, lost all antibacterial activity after the same washing treatment. The antibacterial ADIP-PS sheet demonstrated strong broad-spectrum activity against both Gram-positive and Gram-negative bacteria, including drug-resistant bacteria. Cytotoxicity tests using L929 cells showed that the ADIP-PS sheets were noncytotoxic. This contact-killing antibacterial PS synthesized with ADIP thus demonstrated good prospects as an easily producible antimicrobial material.