Login / Signup

Fusion sequencing via terminator-assisted synthesis (FTAS-seq) identifies TMPRSS2 fusion partners in prostate cancer.

Ugnė DrazdauskienėŽana KapustinaJustina MedžiūnėVarvara DubovskajaRasa SabaliauskaitėSonata JarmalaitėArvydas Lubys
Published in: Molecular oncology (2023)
Genetic rearrangements that fuse an androgen-regulated promoter area with a protein-coding portion of an originally androgen-unaffected gene are frequent in prostate cancer, with the fusion between transmembrane serine protease 2 (TMPRSS2) and ETS transcription factor ERG (ERG) (TMPRSS2-ERG fusion) being the most prevalent. Conventional hybridization- or amplification-based methods can test for the presence of expected gene fusions, but the exploratory analysis of currently unknown fusion partners is often cost-prohibitive. Here, we developed an innovative next-generation sequencing (NGS)-based approach for gene fusion analysis termed fusion sequencing via terminator-assisted synthesis (FTAS-seq). FTAS-seq can be used to enrich the gene of interest while simultaneously profiling the whole spectrum of its 3'-terminal fusion partners. Using this novel semi-targeted RNA-sequencing technique, we were able to identify 11 previously uncharacterized TMPRSS2 fusion partners and capture a range of TMPRSS2-ERG isoforms. We tested the performance of FTAS-seq with well-characterized prostate cancer cell lines and utilized the technique for the analysis of patient RNA samples. FTAS-seq chemistry combined with appropriate primer panels holds great potential as a tool for biomarker discovery that can support the development of personalized cancer therapies.
Keyphrases