Login / Signup

Effect of Different Cellulose Fillers on the Properties of Xanthan-Based Composites for Soil Conditioning Applications.

Alessandro SorzeFrancesco ValentiniJasna SmolarJanko LogarAlessandro PegorettiAndrea Dorigato
Published in: Materials (Basel, Switzerland) (2023)
The aim of this study was to investigate the effect of different types of natural cellulose-based fillers on the properties of Xanthan gum (XG) in order to develop novel bio-based soil conditioners (SCs) that could be used in forestry and agricultural applications. Rheological measurements highlighted that SCs with cellulose fillers characterized by a high aspect ratio and low oxide ash content exhibited an average increase of 21% in yield stress compared to neat Xanthan gum. The presence of cellulose fillers in the composites resulted in a slower water release than that of neat XG, limiting the volumetric shrinkage during the drying process. Furthermore, an analysis of the water absorption and water retention capacity of soils treated with the different SCs was carried out, demonstrating that the addition of 1.8 wt.% of SC with optimized composition to the soil led to an increase in water absorption capacity from 34% up to 69%. From the soil water retention curves, it was observed that the addition of SCs significantly increased the amount of water effectively available for plants in the area between field capacity and permanent wilting point (100-1000 kPa). From practical experiments on grass growth, it was observed that these SCs improved the water regulation of the soil, thus increasing the probability of plant survival under drought conditions.
Keyphrases
  • ionic liquid
  • hyaluronic acid
  • plant growth
  • heavy metals
  • heat stress
  • human health
  • reduced graphene oxide
  • gold nanoparticles
  • free survival
  • stress induced
  • visible light