Sound Damage Detection of Bridge Expansion Joints Using a Support Vector Data Description.
Junshi LiCaiqian YangJun ChenPublished in: Sensors (Basel, Switzerland) (2023)
A novel method is proposed for the damage identification of modal bridge expansion joints (MBEJs) based on sound signals. Two modal bridge expansion joint specimens were fabricated to simulate healthy and damaged states. A microphone was used to collect the impact signals from different specimens. The wavelet packet energy ratio of the sound signal was used to identify the difference in specimen state. Firstly, the wavelet packet energy ratio was used to establish the feature vectors, which were reduced dimensionality using principal component analysis. Subsequently, a support vector data description model was established to detect the difference in the signals. The identification effects of three parameter optimization methods (particle swarm optimization, genetic algorithm optimization, and Bayesian optimization) were compared. The results showed that the wavelet packet energy ratio of sound signals could effectively distinguish the state of the support bar. The support vector data description of Bayesian optimization worked best, and the proposed method could successfully detect damage to the support bar of MBEJs with an accuracy of 99%.