Login / Signup

Molecular interaction induced dual fibrils towards organic solar cells with certified efficiency over 20.

Chen ChenLiang WangWeiyi XiaKe QiuChuanhang GuoZirui GanJing ZhouYuandong SunDan LiuWei LiTao Wang
Published in: Nature communications (2024)
The nanoscale fibrillar morphology, featuring long-range structural order, provides abundant interfaces for efficient exciton dissociation and high-quality pathways for effective charge transport, is a promising morphology for high performance organic solar cells. Here, we synthesize a thiophene terminated non-fullerene acceptor, L8-ThCl, to induce the fibrillization of both polymer donor and host acceptor, that surpasses the 20% efficiency milestone of organic solar cells. After adding L8-ThCl, the original weak and less continuous nanofibrils of polymer donors, i.e. PM6 or D18, are well enlarged and refined, whilst the host acceptor L8-BO also assembles into nanofibrils with enhanced structural order. By adapting the layer-by-layer deposition method, the enhanced structural order can be retained to significantly boost the power conversion efficiency, with specific values of 19.4% and 20.1% for the PM6:L8-ThCl/L8-BO:L8-ThCl and D18:L8-ThCl/L8-BO:L8-ThCl devices, with the latter being certified 20.0%, which is the highest certified efficiency reported so far for single-junction organic solar cells.
Keyphrases
  • solar cells
  • water soluble
  • particulate matter
  • air pollution
  • heavy metals
  • polycyclic aromatic hydrocarbons
  • risk assessment
  • endothelial cells
  • diabetic rats
  • stress induced
  • high resolution
  • electron transfer