Login / Signup

Iron Oxyhydroxide-Covalent Organic Framework Nanocomposite for Efficient As(III) Removal in Water.

Ana Guillem-NavajasJesús Á Martín-IllánElena SalagreEnrique G MichelDavid Rodriguez-San MiguelFelix Zamora
Published in: ACS applied materials & interfaces (2022)
The presence of heavy metal ions in water is an environmental issue derived mainly from industrial and mineral contamination. Metal ions such as Cd(II), Pb(II), Hg(II), or As(III) are a significant health concern worldwide because of their high toxicity, mobility, and persistence. Covalent organic frameworks (COFs) are an emerging class of crystalline organic porous materials that exhibit very interesting properties such as chemical stability, tailored design, and low density. COFs also allow the formation of composites with remarkable features because of the synergistic combination effect of their components. These characteristics make them suitable for various applications, among which water remediation is highly relevant. Herein, we present a novel nanocomposite of iron oxyhydroxide@COF (FeOOH@Tz-COF) in which lepidocrocite (γ-FeOOH) nanorods are embedded in between the COF nanoparticles favoring As(III) remediation in water. The results show a remarkable 98.4% As(III) uptake capacity in a few minutes and impressive removal efficiency in a wide pH range (pH 5-11). The chemical stability of the material in the working pH range and the capability of capturing other toxic heavy metals such as Pb(II) and Hg(II) without interference confirm the potential of FeOOH@Tz-COF as an effective adsorbent for water remediation even under harsh conditions.
Keyphrases