Login / Signup

Phenotypic Plasticity in Juvenile Frogs That Experienced Predation Pressure as Tadpoles Does Not Alter Their Locomotory Performance.

Jun-Kyu ParkYuno Do
Published in: Biology (2023)
Anuran species can respond to environmental changes via phenotypic plasticity, which can also result in ecological impacts across the life history of such species. We investigated the effects of predation pressure (i.e., the non-consumption effect) from the dragonfly larva ( Anax parthenope ) on the phenotypical change of tadpoles into juvenile frogs (specifically the black-spotted pond frog, Pelophylax nigromaculatus ), and also analyzed the impact of morphological changes on locomotory performance after metamorphosis. The experiments on predator impact were conducted in the laboratory. Body length, weight, development timing, and metamorphosis timing in the presence of dragonfly nymphs were measured in both tadpoles and juvenile frogs. The body and tail shapes of the tadpoles, as well as the skeletal shape of the juvenile frogs, were analyzed using landmark-based geometric morphometrics. Furthermore, the locomotory performance of the juvenile frogs was tested by measuring their jumping and swimming speeds. Tadpoles that had grown with predators possessed smaller bodies, deeper tail fins, and slower development rates, and they waited longer periods of time before commencing metamorphosis. Having said this, however, the effect of predator cues on the body length and weight of juvenile frogs was not found to be significant. These juvenile frogs possessed longer limbs and narrower skulls, with subtle morphological changes in the pelvis and ilium, but there was no subsequent difference in their swimming and jumping speeds. Our results showed that the changes in anatomical traits that can affect locomotor performance are so subtle that they do not affect the jumping or swimming speeds. Therefore, we support the view that these morphological changes are thus by-products of an altered tadpole period, rather than an adaptive response to predator-escape ability or to post-metamorphosis life history. On the other hand, delayed metamorphosis, without an increase in body size, may still be disadvantageous to the reproduction, growth, and survival of frogs in their life history following metamorphosis.
Keyphrases
  • body mass index
  • spinal cord injury
  • weight loss
  • risk assessment
  • physical activity
  • human health
  • climate change
  • gene expression
  • single molecule