Login / Signup

Effect of DMSO on Structural Properties of DMPC and DPPC Liposome Suspensions.

Luísa M P F AmaralMaria RangelMargarida Bastos
Published in: Journal of functional biomaterials (2024)
The study and characterization of the biophysical properties of membranes and drug-membrane interactions represent a critical step in drug development, as biological membranes act as a barrier that the drug must overcome to reach its active site. Liposomes are widely used in drug delivery to circumvent the poor aqueous solubility of most drugs, improving systemic bioavailability and pharmacokinetics. Further, they can be targeted to deliver to specific disease sites, thus decreasing drug load, and reducing side effects and poor adherence to treatment. To improve drug solubility during liposome preparation, DMSO is the most widely used solvent. This raises concern about the potential effect of DMSO on membranes and leads us to investigate, using DSC and EPR, the influence of DMSO on the behavior of lipid model membranes of DMPC and DPPC. In addition, we tested the influence of DMSO on drug-membrane interaction, using compounds with different hydrophobicity and varying DMSO content, using the same experimental techniques. Overall, it was found that with up to 10% DMSO, changes in the bilayer fluidity or the thermotropic properties of the studied liposomes were not significant, within the experimental uncertainty. For higher concentrations of DMSO, there is a stabilization of both the gel and the rippled gel phases, and increased bilayer fluidity of DMPC and DPPC liposomes leading to an increase in membrane permeability.
Keyphrases
  • drug delivery
  • drug induced
  • cancer therapy
  • emergency department
  • ionic liquid
  • endothelial cells
  • risk assessment
  • combination therapy
  • weight loss
  • liquid chromatography