Login / Signup

Structure-based inhibitor design for reshaping bacterial morphology.

Yuri ChoiJi Su ParkJinshil KimKyungjin MinKiran V MahasenanChoon KimHye-Jin YoonSewon LimDae Hee CheonYan LeeSangryeol RyuShahriar MobasheryByeong-Moon KimHyung Ho Lee
Published in: Communications biology (2022)
The spiral shape of intestinal pathogen Campylobacter jejuni is critical for invasion of intestinal mucosa epithelial cells. Insofar as this cell morphology plays a role in the pathology of C. jejuni infection, its restructuring by pharmacological intervention could be an unexplored means to prevention of infection. We recently described that peptidoglycan hydrolase 3 (Pgp3) is involved in the spiral-shape formation of C. jejuni. We report herein the design and synthesis of the hydroxamate-based inhibitors targeting Pgp3. C. jejuni cells exposed to these inhibitors changed from the helical- to rod-shaped morphology, comparable to the case of the pgp3-deletion mutant. Evidence for the mechanism of action was provided by crystal structures of Pgp3 in complex with inhibitors, shedding light into the binding modes of inhibitors within the active site, supported by kinetics and molecular-dynamics simulations. C. jejuni exposed to these inhibitors underwent the morphological change from helical- to rod-shaped bacteria, an event that reduce the ability for invasion of the host cells. This proof of concept suggests that alteration of morphology affects the interference with the bacterial infection.
Keyphrases