Alkene Metalates as Hydrogenation Catalysts.
Philipp BüschelbergerDominik GärtnerEfrain Reyes-RodriguezFriedrich KreyenschmidtKonrad KoszinowskiAxel Jacobi von WangelinRobert WolfPublished in: Chemistry (Weinheim an der Bergstrasse, Germany) (2017)
First-row transition-metal complexes hold great potential as catalysts for hydrogenations and related reductive reactions. Homo- and heteroleptic arene/alkene metalates(1-) (M=Co, Fe) are a structurally distinct catalyst class with good activities in hydrogenations of alkenes and alkynes. The first syntheses of the heteroleptic cobaltates [K([18]crown-6)][Co(η4 -cod)(η2 -styrene)2 ] (5) and [K([18]crown-6)][Co(η4 -dct)(η4 -cod)] (6), and the homoleptic complex [K(thf)2 ][Co(η4 -dct)2 ] (7; dct=dibenzo[a,e]cyclooctatetraene, cod=1,5-cyclooctadiene), are reported. For comparison, two cyclopentadienylferrates(1-) were synthesized according to literature procedures. The isolated and fully characterized monoanionic complexes were competent precatalysts in alkene hydrogenations under mild conditions (2 bar H2 , r.t., THF). Mechanistic studies by NMR spectroscopy, ESI mass spectrometry, and poisoning experiments documented the operation of a homogeneous mechanism, which was initiated by facile redox-neutral π-ligand exchange with the substrates followed by H2 activation. The substrate scope of the investigated precatalysts was also extended to polar substrates (ketones and imines).