Login / Signup

Proteomic and metabolic disturbances in lignin-modified Brachypodium distachyon.

Jaime Barros-RiosHim K ShresthaJuan C Serrani-YarceNancy L EnglePaul E AbrahamTimothy J TschaplinskiRobert L HettichRichard A Dixon
Published in: The Plant cell (2022)
Lignin biosynthesis begins with the deamination of phenylalanine and tyrosine (Tyr) as a key branch point between primary and secondary metabolism in land plants. Here, we used a systems biology approach to investigate the global metabolic responses to lignin pathway perturbations in the model grass Brachypodium distachyon. We identified the lignin biosynthetic protein families and found that ammonia-lyases (ALs) are among the most abundant proteins in lignifying tissues in grasses. Integrated metabolomic and proteomic data support a link between lignin biosynthesis and primary metabolism mediated by the ammonia released from ALs that is recycled for the synthesis of amino acids via glutamine. RNA interference knockdown of lignin genes confirmed that the route of the canonical pathway using shikimate ester intermediates is not essential for lignin formation in Brachypodium, and there is an alternative pathway from Tyr via sinapic acid for the synthesis of syringyl lignin involving yet uncharacterized enzymatic steps. Our findings support a model in which plant ALs play a central role in coordinating the allocation of carbon for lignin synthesis and the nitrogen available for plant growth. Collectively, these data also emphasize the value of integrative multiomic analyses to advance our understanding of plant metabolism.
Keyphrases
  • ionic liquid
  • cell wall
  • room temperature
  • plant growth
  • gene expression
  • electronic health record
  • transcription factor
  • protein protein