Login / Signup

Photoimageable Organic Coating Bearing Cyclic Dithiocarbonate for a Multifunctional Surface.

Sol AnJieun NamCatherine KanimozhiYoungjoo SongSeungjun KimNaechul ShinPadma GopalanMyungwoong Kim
Published in: ACS applied materials & interfaces (2022)
We report the fabrication of photocross-linkable and surface-functionalizable polymeric thin films using reactive cyclic dithiocarbonate (DTC)-containing copolymers. The chemical functionalities of these material surfaces were precisely defined with light illumination. The DTC copolymers, namely, poly(dithiocarbonate methylene methacrylate- random -alkyl methacrylate)s, were synthesized via reversible addition-fragmentation chain transfer polymerization, and the reaction kinetics was thoroughly analyzed. The copolymers were cross-linked into a coating using a bifunctional urethane cross-linker that contains a photolabile o -nitrobenzyl group and releases aniline upon exposure to light. The nucleophilic attack of the aromatic amine opens the DTC group, forming a carbamothioate bond and generating a reactive thiol group in the process. The surface concentrations of the unreacted DTC and thiol were effectively controlled by varying the amounts of the copolymer and the cross-linker. The use of methacrylate comonomers led to additional reactive surface functionality such as carboxylic acid via acid hydrolysis. The successful transformations of the resulting DTC, thiol, and carboxylic acid groups to different functionalities via sequential nucleophilic ring opening, thiol-ene, and carbodiimide coupling reactions under ambient conditions were confirmed quantitatively using X-ray photoelectron spectroscopy. The presented chemistries were readily adapted to the immobilization of complex molecules such as a fluorophore and a protein in lithographically defined regions, highlighting their potential in creating organic coatings that can have multiple functional groups under ambient conditions.
Keyphrases