Login / Signup

Corrections of Molecular Morphology and Hydrogen Bond for Improved Crystal Density Prediction.

Linyuan WangMiao ZhangJie ChenLiang SuShicao ZhaoChaoyang ZhangJian LiuChunyan Chen
Published in: Molecules (Basel, Switzerland) (2019)
Density prediction is of great significance for molecular design of energetic materials, since detonation velocity linearly with density and detonation pressure increases with the density squared. However, the accuracy and generalization of former reported prediction models need further improvement, because most of them are derived from small data sets and few molecular descriptors. As shown in this paper, for molecules presenting brick-like shape or containing more hydrogen-bond donors the predicted densities have large negative deviations from experimental values. Thus, a molecular morphology descriptor η and a hydrogen-bond descriptor Hb are introduced as correction items to build 3 new QSPR models. Besides, 3694 nitro compounds are adopted as data set by this work. The accuracies are obviously improved, and the generalizations are verified by an independent test set. At the level of B3PW91/6-31G(d,p), the effective ratios (ERs) of the 3 Equations, for Δρ < 5%, are 92.7%, 91.8%, and 93.3%; for Δρ < 2%, the values are 53.5%, 51.3%, and 54.7%. At the level of B3LYP/6-31G**, for Δρ < 5%, the values are 92.3%, 91.4% and 92.9%; for Δρ < 2%, the values are 53.7%, 51.4% and 53.2%.
Keyphrases
  • single molecule
  • electronic health record
  • big data
  • visible light
  • transition metal
  • solid state