Login / Signup

TiO2 Coating Strategy for Robust Catalysis of the Metal-Organic Framework toward Energy-Efficient CO2 Capture.

Lei XingKexin WeiYuchen LiZhimo FangQiangwei LiTieyue QiShanlong AnShihan ZhangLidong Wang
Published in: Environmental science & technology (2021)
High energy duty restricts the application of amine-based absorption in CO2 capture and limits the achievement of carbon neutrality. Although regenerating the amine solvent with solid acid catalysts can increase energy efficiency, inactivation of the catalyst must be addressed. Here, we report a robust metal-organic framework (MOF)-derived hybrid solid acid catalyst (SO42-/ZIF-67-C@TiO2) with improved acidity for promoting amine regeneration. The TiO2 coating effectively prevented the active components stripping from the surface of the catalyst, thus prolonging its lifespan. The well-protected Co-Nx sites and protonated groups introduced onto the TiO2 surface increased the amount and rate of CO2 desorption by more than 64.5 and 153%, respectively. Consequently, the energy consumption decreased by approximately 36%. The catalyzed N-C bond rupture and proton transfer mechanisms are proposed. This work provides an effective protection strategy for robust acid catalysts, thus advancing the CO2 capture with less energy duty.
Keyphrases
  • metal organic framework
  • visible light
  • quantum dots
  • ionic liquid
  • highly efficient
  • gold nanoparticles
  • electron transfer
  • transition metal